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NOMENCLATURE 

acceleration due to gravity; 
thermal conductivity of the porous medium 
permeabiIity of the porous medium; 
typical length scale of the body; 
local heat flux; 
radius of the (axi-symmetrical) body; 
temperature; 
temperature of the ambient fluid ; 
temperature on the surface of the body; 
temperature difference, = T,- To; 
Darcy’s law velocity in the .x-direction; 
Darcy’s law velocity in y-direction; 
coordinate along the body surface; 
coordinate normal to the body surface. 

Greek symbols 

2, equivalent thermal diffusivity; 

i% coefficient of thermal expansion; 

Pi. viscosity of the convective fluid ; 

$. 
density of the convective fluid ; 
angle between the normal drawn outwards from 
the body and the downward vertical. 

BOUNDARY layers on bodies immersed in saturated porous 
media for both free and mixed convection have been the 
subject of several recent papers [l-S]. These studies have 
been limited to bodies with a simple geometric con- 
figuration. Here we consider the free convection boundary 
layers on two-dimensional and axi-symmetric bodies of 
arbitrary shape embedded in a saturated porous medium. 
The bodies are assumed to be impermeable and at a 
constant temperature different to that of the surrounding 
fluid. We show that the governing equations possess a 
similarity solution for any body shape, with a resulting 
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ordinary differential equation which has been solved 
previously by Ackroyd [9], though in an entirely different 
context. This is not the usual case for free convection 
boundary layers where similarity solutions are possible 
only for a limited class of body shapes. [IO]. 

Two types of body are discussed. Firstly we consider an 
infinite cylinder mounted with its generators horizontal so 
that the flow is two-dimensional round the cylinder. Here 
we use the coordinate x to measure distance round the 
cylinder from the lowest point. Secondly we consider an 
axi-symmetric body mounted with its axis of symmetry 
vertical. Here we use the coordinate x to measure distance 
along the body surface from the lowest point. In both cases 
the coordinate 4’ measures distance normal to the body and 
Q(x) is the angle between the outward normal and the 
downward vertical. The coordinate system is shown in Fig. 
1. 

The boundary-layer equations are, following Wooding 
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where n = 0 for two-dimensional bodies and n = 1 for axi- 
symmetric bodies. r(x) is the radius of the axi-symmetric 
body. The boundary conditions are 

u = 0, T = T, on J‘ = 0, u + 0, T -+ T, as .r + K. (4) 

Using I as a typical length scale, equations (I), (2) and f3) 

b 

FIG. 1. Co-ordinate systems: (a) two-dimensional bodies; (b) axi-symmetric bodies. 
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can be made non-dimensional by putting 

Writing sin I$ = S(X), this gib :s 

u = OS(X) 

) + ?$ (R"V) = 0 

with boundary conditions 

(7) 

V = 0, II = 1 on Y = 0, CT + 0, U --t 0 as Y + x. (8) 

Equations (5)-(7) possess a similarity solution as follows. 
We define a stream function $ by c’ = (l/R”)(?$/aY) and 
V = - (liR”)(?$,‘c’X) and then put 

1.12 

R*“(t)S(t)dr .f 01) 

\ 

‘1= YS(X)R”(X),” 2 il R*“(r)S(t)dt 
’ 0 ) 
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With S(X) = I and II = 0 the above gives $ = (2X)‘;‘f(q), 
4 = Yi(2X)’ ’ and the similarity solution for the vertical 
flat plate derived by Cheng and Minkowycz [6] is 
recovered. Equations (5) and (6) then become 

,f’ = u (9) 

0” + f’f? = 0 (10) 

where dashes denote differentiation with respect to ‘1. Using 
(Y), (10) becomes 

1”” + .fl” = 0 (11) 

with boundary conditions 

f’(O), f”(0) = 1, ,f“ + 0 as 11 + r-. (12) 

Equation (II) has been solved previously by Ackroyd [9], 
from which it is found that f”‘(0) = -0.62756. The local 
heat transfer Q = -k(i~/i)~),=, is then 
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